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Abstract
We propose a straightforward method for solving the Poisson equation that is
appropriate for charge densities expressed as spherical harmonic expansions,
for example, electron densities in full potential multiple scattering electronic
structure codes. The method is conceptually simple, is accurate, has
computation times that scale linearly with the number of expansion centres
(atoms) up to thousands of atoms and can be efficiently implemented on
massively parallel processor computers.

1. Introduction

Solving the Poisson equation (in Hartree atomic units),

∇2v(r) = −4πρ(r), (1)

for the electrostatic potential, v(r), in terms of the charge density, ρ(r), is important in the
context of first principles density functional (DF) calculations.

In DF theory the electron density is often represented by a sum of plane waves or augmented
plane waves. The k-space nature of these representations is well suited to the calculation of
the Hartree potential. This has facilitated the development of full potential electronic structure
codes based on plane wave representations. In an alternative set of methods based on multiple
scattering theory (MST) it is assumed that the electron density and one-electron potential
are well represented by spherical harmonic expansions about the nuclear positions. Methods
that express the electron density as spherical harmonic expansions include the Korringa–
Kohn–Rostoker (KKR) [1], the quadratic KKR [2], locally selfconsistent multiple scattering
(LSMS) [3, 4], locally selfconsistent Green function (LSGF) [5], layer KKR [6], linearized
muffin-tin orbital (LMTO) [7], Green function impurity method [8] and others. The optimum
method for solving the Poisson equation in MST codes is yet to be determined. Although
there are several techniques that purport to conveniently construct the Hartree potential
corresponding to an electron density expanded in this manner, no technique has emerged
as preeminent. In this paper we propose a method that is particularly straightforward. We
argue its merits and present an example of its application to an exactly solvable problem. We
also relate it to the widely used method of Gonis et al [9].
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Electron densities found in materials and the corresponding Hartree potentials have
expansions that converge rapidly in angular momentum1. Hence, we shall assume that the
electron density is supplied up to a sufficiently high angular momentum, lmax-ρ , to converge
it, and that the task at hand is to find the Lth component of the potential expanded about a
nucleus taken, for simplicity, to be at the origin. The potential components are sought up
to lmax-v which is typically equal to lmax-ρ . Our method introduces an additional parameter,
l = lmax-neighbour , the angular momentum cut-off of the truncated electron density on the sites
neighbouring the origin. The convergence of the potential with respect to this parameter is
investigated by comparison to an exactly solvable model introduced by Morgan [10].

At the time of early full potential multiple scattering calculations [2] there were serious
questions [11–14] about the applicability of MST to potentials that are non-zero beyond the
region formed by non-overlapping spheres centred at each scatterer. There were questions
about whether or not the MST solution could be cast in terms of the atomic scattering matrices
alone. In the zero-energy limit where the Schrödinger equation becomes the Poisson equation
the issue becomes whether or not the potential outside a Wigner–Seitz cell can be given in terms
of the moments of the cell charge alone. The resolution of these questions [15, 16] has moti-
vated development of several methods to accurately determine the potential for site expanded
electron densities [9, 17–20]. These methods are not approximations; they claim to provide
solutions of arbitrary accuracy if the various sums are properly converged. These proposed
methods should therefore give accurate results if internal parameters are taken to convergence.
The method of Gonis has the convenience of requiring only the electron density in the local cell
and the multipole moments of all other cells. Furthermore, its specification of the solution in
terms of the moments alone directly supports and sheds light on the solution on the Schrödinger
equation in terms of the single-site scattering matrices alone. Because the ultimate accuracy
of all methods should be comparable, the utility of the techniques will be determined by ease
of coding, memory requirements and the number of operations required to reach the desired
level of accuracy. We believe that the method proposed here is conceptually simpler and easier
to implement than other methods. Furthermore, the computation time scales linearly with the
number of atoms with the exception that the Ewald procedure to account for the isotropic con-
tribution to atomic potentials from surrounding monopoles requires operations of O(N2). This
O(N2) term is small for systems as large as thousands of atoms. Furthermore, this method can
be parallelized efficiently because very little communication between processors is required.
Because it is essentially O(N) and efficiently implemented on massively parallel processor
computers it requires a small amount of time compared with the solution of the MST equations.

2. Method

To simplify discussion we temporarily remove the nucleus at the origin so that only electrons
contribute to the charge density around the origin and the potential is nonsingular. The nuclear
potential Z/r can be added at the end of the discussion. Nuclei are assumed to occupy all other
atomic sites. We shall also assume that the problem of determining the electrostatic potential
near the origin from a collection of point multipole moments of any extent is obtainable by
techniques described elsewhere [21–23] provided the multipole expression for the potential at
the origin from each site individually converges in angular momentum. This will hold for site
i provided its moments are derived from the charge density inside its Wigner–Seitz cell, �i ,
and provided its circumscribing sphere, rc,i does not enclose the origin [24]. In many cases
determining the multipole potential may be as simple as applying the Ewald procedure [25]

1 It is necessary in some lattices to introduce empty or vacancy sites that do not contain a nucleus.
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for the monopole moments and either a straightforward summing of the contributions from
higher multipole moments or an extended Ewald method [21,22]. For nonperiodic collections
of moments, fast multipole methods have been developed [23].

A simple and fast algorithm (algorithm I) gives the potential anywhere within the unit cell
but leaves the constant multiplying the homogeneous solution unspecified. In algorithm I the
charge is divided into that which is interior to the circumscribing sphere of the cell at the origin
and that which is exterior. The Lth component of the potential contributed by the charge, ρe

L

(extended charge density), inside the circumscribing sphere of radius rc is simple to calculate
at all radii inside the sphere. A solution to the Poisson equation for ρe

L is [26]

ve
L(r) = 4π

2l + 1

(∫ r

0
r ′2 dr ′ r ′l

r l+1
ρe

L(r ′) +
∫ rc

r

r ′2 dr ′ rl

r ′l+1 ρe
L(r ′)

)
. (2)

The charge outside rc contributes to the potential at radii inside rc in a particularly simple
way. The charge outside the sphere determines the coefficient, aL, of the homogeneous
solution, aLrl . If the single number aL were known the Lth component of the potential would
be known at all points in the sphere and our problem would be solved. The total potential
is [18]

vL(r) = ve
L(r) + aLrl. (3)

Another simple and fast algorithm (algorithm II) gives the potential, but only at points near the
origin. First, the electron density is truncated at the Wigner–Seitz cell boundaries using the
spherical harmonic expansion, about the nuclear position, of the cell step function σ(r) [27] to
obtain spherical harmonic expansions of the truncated electron densities about their respective
nuclei.

ρt
L(r) =

Lmax-ρ ,L′+L∑
L′,L′′

∫ rc

0
d�r ρe

L′(r)YL′(r)σL′′(r)YL′′(r)Y ∗
L(r). (4)

Second, the potential, vt
L(r), associated with the truncated density centred at the origin is

calculated ‘l by l,’ using equation (2) but with ρe
L replaced by ρt

L. Third, the multipole
moments, qt

i,L, of the truncated electron density on each site are calculated. The potential near
the origin is the sum of vt and the potential of the surrounding multipole moments:

v
lmax-neighbour

L (r) = vt
L(r) + vmult

L ({qt
L}, r, lmax-neighbour ); (5)

vmult
L (r) =

∫
d�r

lmax-neighbour∑
i,L′

4π

2l + 1

qt
i,LYL′(r − Ri)YL(r)

|r − Ri|l+1 . (6)

The multipole moments can be obtained from vt on each site:

4π

2l + 1

qt
i,L

rl+1
c

= vt
i,L(rc). (7)

Performing the angular integration in equation (6) gives

vmult
L (r) = amult

L (lmax-neighbour )r
l (8)

where

amult
L (lmax-neighbour ) =

∑
i

∑
L′

BL′
L Y ∗

l+l′,m′−m(Ri )(q
t
i,L′ + δl=0ZiY0,0)/R

l+l′+1
i (9)

and

BL′
L = (4π)3/2

(
(l + l′)!(2l + 2l′ − 1)!!

l!(2l + 1)!!l′!(2l′ + 1)!!

)1/2

(−)l
′+m′

(
l l′ l + l′

−m′ m m′ − m

)
. (10)

The last factor is the Wigner 3j -symbol.
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The limitation of algorithm II is that it is convergent only near the origin. But convergence
near the origin is all that is required to determine the coefficient, aL, that is unspecified by
algorithm I. Algorithms I and II work together to give a final expression for the potential:

vL(r) = ve
L(r) + limitrf →0;lmax-neighbour→∞(v

lmax-neighbour

L (rf ) − ve
L(rf ))

(
r

rf

)l

. (11)

vL(r) = ve
L(r) + limitlmax-neighbour→∞

×
(

4π

2l + 1

∫
r2 dr

(ρt
L(r ′) − ρe

L(r ′))
rl+1

+ amult
L (lmax-neighbour )

)
rl. (12)

The method of Gonis [9] which we shall refer to as the removed cell method, RCM, relies
on similar concepts although its derivation had a different motivation. The motivation for the
RCM was to prescribe the potential outside a cell in terms of only the charge moments. The full
solution is given by superposition. Here we provide a derivation that closely follows the above
derivation of the RSM. First the charge is divided into that which is within the Wigner–Seitz
cell at the origin, �0 and that which is not. The total potential is

vL(r) = vt
L(r) + bLrl�(rins − r) + fL(r)�(r − rins). (13)

The last term on the right-hand side is a homogeneous solution that matches blr
l at

the inscribed sphere radius, rins , and matches the potential at the cell boundary. This is more
complicated than the RSM where the form alr

l is used throughout. In order to find the potential
contributed by charge outside the cell at the origin, the charge is broken into contributions from
each Wigner–Seitz cell, �i . The cells whose circumscribing spheres do not intersect the cell
at the origin contribute a potential of the far field multipole form given by equation (6). The
neighbouring cells also contribute as far multipole fields for points outside their circumscribing
spheres but the situation inside the circumscribing sphere of �i and also inside �0 (the moon
region) must be treated more carefully. For each point, r0, in the moon region we can pick a
point, R(r0), outside the rc,i such that a sphere centred at R(r0) does not intersect �i . Inside
this sphere the potential can be expanded as

∑
L cL(r − R(r0))

l . The point R(r0) is outside
the circumscribing sphere so the potential near R(r0) can be evaluated with the simple far
field multipole expression. This allows the cL to be determined and the potential at r0 to be
evaluated by summation over L. Removing a cell instead of a sphere has required the use of
a different expansion point, R(r0), for each r0 whereas in the RSM the origin can be used for
all R(r0). The RCM has, in a somewhat circuitous way, provided the value of the potential at
all points inside �0. If one is interested in the spherical harmonic expansion of the extended
potential inside rc,0 there is an integral over angles that requires values of the potential from
�0 and neighbouring cells �i . If the expansion of the truncated potential is required then the
spherical expansion of the step function must be used to avoid the use of the RCM expression
for V (r0) outside �0 because V (r0) is valid only inside �0. The RSM requires one convergent
sum over angular momentum to obtain VL(r) whereas the RCM requires two sums one of
which is conditionally convergent. Gonis and others have successfully implemented the RCM
so it is clear that its complexities can be mastered. Here, we point out that a simpler procedure
is possible if one makes the choice of removing a sphere instead of a cell.

3. Morgan test

Morgan [10] introduced a test density and its exact solution:

ρ(r) = B
∑

n

eiTnr; (14)
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Figure 1. Convergence w.r.t. the maximum l used in summing the exact spherical harmonic
expansion of the Morgan potential. Symbols on the abscissa label symmetry points of the fcc
Wigner–Seitz cell. The solid line represents both the exact result and the sum up to l = 8 of the
exact spherical harmonic expansion.

Tn are the nearest neighbour fcc reciprocal lattice vectors. The corresponding potential is

v(r) = 4πρ(r)/T 2 + constant. (15)

We choose the lattice constant and B equal to 1.0. The potential and density are easily expanded
in spherical harmonics

ρL(r) = 4πjl(Tr)il
∑

n

YL(Tn) (16)

and

vL(r) = (4π)2jl(Tr)il
∑

n

YL(Tn)/T 2 + constant δl,0. (17)

The potential at any point in the central cell can be calculated via equations (14) and (15)
by summing over n or via equation (17) by summing over L and n; however, the exact potential
as calculated from equations (14) and (15) will be approached only in the limit l → ∞. In
figure 1 we compare the exact potential from equation (15) with the potential reconstructed
from the exact vL given by equation (17) but summed up to values of l = 2, 4, 6 and 8. Observe
that the potential converges rapidly in angular momentum; the l = 8 values agree with the
exact values to within the thickness of the line.

In figure 2, the potential calculated with lmax-v = lmax-ρ = 8 is shown as a function
of lmax-neighbour beginning at lmax-neighbour = 10. Even for low values of lmax-neighbour the
potential is reasonable throughout most of the cell volume. However near the cell boundary
and particularly at the corners of the cell disagreement is substantial. For lmax-neighbour = 8
(not shown) the error at H is 0.21, hence the usefulness of potentials calculated with low
values of lmax-neighbour is questionable. When lmax-neighbour = 10 the error at H is down to a
few per cent and the potential is adequate for many applications. The potential converges to
the exact result as lmax-neighbour is further increased.
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Figure 2. Error in the calculated Morgan potential as a function of lmax-neighbour .
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Figure 3. Error in potential at H = (100)/2 as a function of lmax-ρ for lmax-neighbour = 22.

In figure 3, lmax-neighbour has been set equal to 22 and the error in the potential at the
‘H-point’ is plotted as a function of lmax-ρ . We observe that the potential is well converged at
lmax-ρ = 8.
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4. Implementation

This algorithm has been implemented within the LSMS [3,4]. Each atom is assigned a process.
Each process computes = ve

L(r) of its assigned atomic nucleus. The values of the moments are
exchanged among all processes so that each process can construct the Madelung contribution
to its local potential. Monopole contributions are handled by the Ewald method. If there are
dipole terms that cannot be converged by the direct summation in equation (8) they can also
be incorporated via an Ewald procedure.

The method is ‘order N ’ except for the Ewald procedure which is O[N2] where N is the
number of atoms in the system or unit cell.

5. Conclusions

We have presented a straightforward procedure for calculating the solution to Poisson’s
equation when the charge density is represented by a spherical harmonic expansion. We have
demonstrated the precision of the method by comparing with exact results for the Morgan
density.

This method is specifically for those situations in which the potential and charge density
are well represented by site expansion in spherical harmonics. It is assumed that the charge
density and potential within the circumscribing sphere of each Voronoi polyhedron are rapidly
convergent in l about some point inside each cell. If this situation is not attainable by any
choice of cells including the introduction of empty cells, then the procedure is not applicable.
However, if such a choice of cells is not obtainable then multiple scattering methods, likewise,
are not applicable. If the charge and potential can be expanded in spherical harmonics the
method proposed has one parameter, lmax-neighbour , with respect to which it must be converged.
The convergence with respect to this parameter is demonstrated for an exactly solvable case.

In this paper we have calculated the Hartree potential without taking advantage of a
reference charge density. It should be remembered that in practice it is useful to subtract from
the electron density a reference charge density. A reference electron density can be any density
for which the exact solution is easily obtained. This can increase the accuracy by lessening the
demands on the cell shape function and thereby accelerating the convergence in lmax-neighbour

of the potential contributions from the neighbouring sites. Simple choices for a reference
charge density are a uniform density with compensating point charges, overlapped atomic
charge densities, or a potential previously calculated to high precision with this or another
method for a similar system. Another modification that would accelerate the l convergence
is the use of ‘fuzzy’ cell shape functions that go to zero continuously and overlap in such a
manner that the sum over all cell shape functions is equal to unity at every point in space.
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